

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2017
Lab 13 – Recursion

Assignment: Lab 13 – Recursion
Due Date: During discussion, December 4th through December 7th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will give you even more practice with using recursion.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Introduction to Recursion

So far this semester, we’ve learned many different ways to control the flow of a
program: selection statements, loops (both for and while), and functions.

One specialized type of function makes use of recursion, and so we call it a
recursive function.

Some problems can be solved by breaking a
problem down into smaller pieces of the same
problem. A real world example would be
Matryoshka dolls, also known as Russian nesting
dolls. These are sets of hollow wooden dolls that
“nest” inside each other, with each doll getting
progressively smaller, with the smallest doll being
solid wood.

(Image from Wikimedia: http://bit.ly/2fDQstN)

If our overall goal is to open all of the dolls until we reached the smallest doll,
we can break the problem down into smaller pieces of itself.

1. Open the doll
2. If the doll is solid wood, stop
3. If there’s another hollow doll inside, go back to step 1

This is a very simple example of a recursive solution to a problem. A key
component of a recursive function is that it must call itself in order to solve the
problem. In the nesting dolls example, opening the doll is the “function,” and
we continue to “call” that function until we’ve reached the solid doll at the
center.

http://bit.ly/2fDQstN
http://bit.ly/2fDQstN

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Recursion vs Iteration

You could have also solved the previous nesting dolls problem with a while

loop, or even a for loop if we knew ahead of time how many dolls there

were. Both recursion and iteration break a large problem down into smaller
pieces. The main difference between recursion and iteration can be found if
we look at their underlying purpose.

 With iteration, the purpose is to repeat an action until a task is done.
This is true for while loops (stop when the conditional evaluates to

False) and for loops (stop when it reaches the end of the list).

 With recursion the purpose is to break a problem down into smaller and
smaller pieces of itself. When you combine all of those solved smaller
pieces of the problem, the problem as a whole is solved.

Part 1C: Review – Parts of a Recursive Function

A successful recursive function must have two parts: at least one base case
and at least one recursive case. The base case is similar to the conditional in
a while loop, in that it tells the program when to stop. In a recursive

function, it stops calling itself, and typically returns something (a value, a
message, or even None). A recursive function may have more than one base

case, just like a while loop may have more than one comparison in its

conditional.

The recursive case is the more interesting part, since this is where the function
makes its recursive calls to itself. A recursive call is the most important part
of a recursive function, and has a few key features:

 It must call the function again with new inputs.

 These new inputs must cause the function to approach at least one of the
base cases.

 If needed, the call must also include the return keyword, in order to

be able to return the final result from the original function call.

CMSC 201 – Computer Science I for Majors Page 4

Part 1D: Recursive Example

You’ve seen a number of recursive examples in class already, but let’s look at
a few more. A very simple one is a “countdown” function – as a reminder, this
is a toy example. We could easily do this with a loop, but we want to instead
examine how recursion works.

Here is the code for a recursive countdown function:

def countDown(currNum):

 # BASE CASE

 if currNum == 0:

 print("The end!")

 # RECURSIVE CASE

 else:

 print("Counting down from", currNum, "...")

 countDown(currNum - 1) # <----RECURSIVE CALL

Here is a sample run, using the full code (including a simple main() to get the

number and make the initial call to the recursive function):

Please enter a number to count down from: 7

Counting down from 7 ...

Counting down from 6 ...

Counting down from 5 ...

Counting down from 4 ...

Counting down from 3 ...

Counting down from 2 ...

Counting down from 1 ...

The end!

The base case, when the function ends, is when the number reaches zero.
When it stops running, this function doesn’t return anything, it simply doesn’t
call itself (the recursive function) again.

CMSC 201 – Computer Science I for Majors Page 5

Part 2: Exercise
In this lab, you’ll be downloading the start of a program that recursively
scrambles a word, and prints out all of the possible permutations of that word.
For example, if the string was “201”, the permutations would be:
 “201”, “210”, “021”, “012”, “120”, and “102”

Tasks

Starting:

 Copy the given_ scramble.py file from Dr. Gibson’s pub directory

 It should have been renamed to be scramble.py

Programming:
 Open the file and examine the permute() function and main()

 Determine what the base case needs to be
 Write code for the base case conditional

 Calculate the new values needed for the recursive call
 Write the code to make the recursive call

 Update main() to include a call to the recursive function

General:
 Run and test your code as needed
 Show your work to your TA

If you get stuck, don’t forget what you learned in Lab 09!

Remember, a “debug statement” is a print() statement that gives you more

information on what exactly is going on. Placing a print() statement inside

your code, can show you what is going on in the "background" of your
program. Each time the code is run, the information in your debug statement
will be printed to the screen, allowing you to trace what is happening with your
program.
For example, you might want to see what the current scramble looks like, or
what the recursive function is being given as parameters.

CMSC 201 – Computer Science I for Majors Page 6

Part 3A: Downloading the File

First, create the lab13 folder using the mkdir command – the folder needs

to be inside your Labs folder as well.

Next, copy a file into your lab13 folder using the cp command. (The

command should be all on one line.)

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/given_scramble.py scramble.py

This will copy the file given_ scramble.py from Dr. Gibson’s public folder

into your current folder, and will change the file’s name to scramble.py

instead.

The first thing you should do in your file is complete the file header comment,
filling in your name, section number, email, and the date.

CMSC 201 – Computer Science I for Majors Page 7

Part 3B: Word Scrambler Program
For Lab 13, you will be implementing a word scrambler, using recursion. The
algorithm your program should use is:

 Start with an empty string, and a string of letters (the word to scramble)
o For each letter remaining, add it to the empty string (which is now

the currently growing scrambled word)
 Continue until no letters remain

This image gives a breakdown of each recursive call, and how the recursive

calls will branch, given “201” as a starting string to scramble.

Here is some sample output of the program, with the user input in blue.

bash-4.1$ python scramble.py

Welcome to the Scrambler!

Please enter a string to scramble: one

one

oen

noe

neo

eon

eno

Thank you for using the Scrambler!

(More sample output, showing a longer run, is on the following page.)

CMSC 201 – Computer Science I for Majors Page 8

Here is more sample output of the program, with the user input in blue.

bash-4.1$ python scramble.py

Welcome to the Scrambler!

Please enter a string to scramble: CMSC

CMSC

CMCS

CSMC

CSCM

CCMS

CCSM

MCSC

MCCS

MSCC

MSCC

MCSC

MCCS

SCMC

SCCM

SMCC

SMCC

SCMC

SCCM

CMSC

CMCS

CSMC

CSCM

CCMS

CCSM

Thank you for using the Scrambler!

(Note that the final scrambled list includes duplicates, because the original
word has two “C” characters.)

CMSC 201 – Computer Science I for Majors Page 9

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

Starting:

 Copy the given_ scramble.py file from Dr. Gibson’s pub directory

 It should have been renamed to be scramble.py

Programming:
 Open the file and examine the permute() function and main()

 Determine what the base case needs to be
 Write code for the base case conditional

 Calculate the new values needed for the recursive call
 Write the code to make the recursive call

 Update main() to include a call to the recursive function

General:
 Run and test your code as needed
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

